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1. Introduction

Tlere is an everincreasing number of articles being published about space-
time models and analysis: a sampling of such articles in the area of atmo-
spheric pollution includes Bilonick (1985), Eynon and Switzer (1983), Stein
(1986) and Le and Petkau (1988).

Most applications of geostatistics have concentrated on spatial depen-
dence and not so many have considered the link with temporal dependence.
The above tendency is due to the fact that geostatistical procedures, in-
cluding kriging, have been almost exclusively designed for the analysis of
spatial data; moreover, there are several possible reasons for this neglect
(i.e. see Myers, 1992, p. 63).

As noted by Journel (1986), there are major differences between spa-
tial and temporal phenomena. The most important difference is not so
much that between spatial and temporal problems, but rather that between
spatio-temporal problems and ejther of the two simpler models.

The extension of methods to combine spatial-temporal dependence re-
quire the use of a natural distance function in space-time.
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The aim of the present work is to apply kriging in t.he space-time dfnnam
in order to study the phenomena of interest as spatllt)—tem'})orfml variables.
An application to SO2 measurements taken in the Milan district has been

described.

2. Modeling space-time data

Space-time data are assumed to be a realization of the stochastic process
(Z(s,t);s € D,t€T) (1)

where the domain D C ®¢,d < 3. Most comm?nly T = (1,2,...), which
allows (1) to be viewed as a time series of spatial processes, ez'xch .proceis(s
occurring at equally spaced time points. If t%le temporz}l cqrrelatlon is wea i
then sampling across time leads to approximate 1‘ephcat10n of. the sPa(;}a
error process and more precise inferences. The generic problem. is to predict
(Z(s,t);s € Dyt € R4 ) from data (Z(sl,;,t,'),...,Z(sn,.',-,t,'),z = 1,...,f7rg
and t; < 13 < ... < ). Assuming that the first and second moments o
exist, Z can be decomposed as

Z(s,t) = m(s,t) + Y(s,1) (2)
where Y is the stochastic process with
E(Y(s,t) =0 3)

and m(s, t) is the mean function of Z. For a second order stationary random
field Y, the covariance function

Coa(h) = Cov(Y (s + hoyt + he),Y(s,0)) b= (hs,he) (4)

depends solely on the lag vector h, not on location or time. .

The intrinsic hypothesis is a weaker assumption that sets requirements
only on differences between variables Y (s+ hs,t+h) and Y (s,t), separated
by h:

E(Y(s+ hsyt+hi) = Y(s,2)) =0

and the variogram

Var(Y(s+ hs,t 4 hy) — Y (s,1))
2

y(hs,he) =

depends solely on h. ' e
In particular y(hs,0) is called the spatial variogram and 7(0, h) is calle
the temporal variogram.
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In air pollution applications there are some examples of geostatistical
methods used to analyze both spatial and temporal variability (Soares et
al., 1992).

The simplest way to model a variogram in space-time is to separate the
dependence on the two. There are some examples in the literature wherein
variograms have been modeled in space-time (Rodriguez-Iturbe et al., 1974;
Bilonick, 1987; Rouhani et al., 1989). These include the following:

C(u,w) = Cy(w)Ch(u)

Y(u,w) = o + 7(w) + yh(w) + The(gu’ + w?)
GC(u,w) = GCy(w) + GCh(u)

where

C = spatiotemporal covariance

C; = temporal covariance

Cy, = spatial covariance

~ = spatiotemporal variogram

vt = temporal variogram

vr = spatial variogram

Yh, = isotropic spatiotemporal variogram

6o = pure nugget variogram

GC = spatiotemporal generalized (polynomial) covariance

GC; = temporal generalized covariance

GC), = spatial generalized covariance

g = geometric coeflicient of anisotropy between space and time
Unfortunately, some of these are not completely valid (Myers and Journel,

11990).

2.1. SPACE-TIME KRIGING

If time is simply considered as another dimension, then there is no change in
the form of the kriging estimator nor in the kriging equations, that is, if (s, t)
is an unsampled location-time and given (Z(s1,,ti),-..,2Z(Sn;irti)yt =
1,...,m) then Z(s,t) could be estimated by

m ny

25,t) = 305 Mg Z(s0jsti)

i=1j=1

where there are no assumptions about any interrelations between the space
and the time coordinates of a point. The estimator will interpolate in either
space or time and will extrapolate in either space or time.
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Figure 1. Network of Milan district. The coordinate system of the monitoring stations
is referred to the Italian national grid system (Gauss-Boaga).

3. The Data Set

Air pollution in the province of Milan may be attributed to a variety of
factors, notably emissions from motor vehicles, manufacturing and heating
systems in buildings during winter. Sulphur dioxide (SO3) is an index of
contamination from heating systems not fueled by natural gas and from
Diesel-powered motor vehicles.

The data collection network, which has been planned in relation to the
standards and information provided by the Lombardy Region’s Environ-
mental Town Council, consists of 33 survey stations (Fig. 1). The coordi-
nate system of the monitoring stations is referred to the Italian national
grid system (Gauss-Boaga), which is based on the Universal Transverse
Mercator (UTM) projection.

The data set described throughout the paper refers to monthly averages
of SO, from January 1983 to December 1986. The sampling points are not
uniformly distributed; the central portion of the study area has a relatively
higher concentration of points. Fig. 2 shows the histogram of the data set:
there are 8 missing values.
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Figure 2. Histogram of the monthly

Tl averages of SO, from January 1983 to December

3.1. TREATMENT FOR, SEASONAL EFFECT

I\he SCaS()Ilal eﬁect h o y p g p
as bee“ detected b Inspe t”l the ra ll 01 t]le tlllle
C g
seriles 101 eaCh mOllltOHIlg StatJOn. Ilg. 3 ShOWS SlICh a plOt fOI‘ one Of these

’ ( ) N .
Sta(tl()l])[s StathOIl ]. . I)llel] 11[]1110(‘1(.’1 (2) we Suppose tha,t the mean fUIICtIOIl

m(s,t) = a(s,t) +
where
VseD VieT
2. Za(s,j) =0 VseD
=1

L a(s,t) = a(s,t +d)
d

generated by removing the first 7 entries and the

7, by removing the first value for station 22 and

values for station 33. by removing the first 5
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Figure 3. Graph of the time series for station 1.

3.2. STRUCTURAL ANALYSIS

The SO, space-time data set has been modelled by the stochastic process
described by (2), (3) and (4).

In the present analysis a simple product spatial-temporal covariance
model for the residual process Y:

Clu,w) = Co(w)Ch(u) (5)

has been used, where spatial dependence has been separated by the tempo-
ral one. The previous model could be easily written in terms of the spatial-
temporal variogram:

Yo, w) = C1(0)75(w) + Cs(0)re(w) = ¥s(u)7e(w)

where

vt = spatiotemporal variogram

v; = temporal variogram

v, = spatial variogram

C, = temporal covariance

Cs = spatial covariance
Fig. 4 shows the estimated temporal variogram using the original data: note
that the periodic structure of the data set has been reproduced. Fig. 5 and 6
show the estimated spatial and temporal variograms using deseasonalized
data respectively, with the fitted models whose analytical expression is
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Figure 4. Estimated temporal variogram using the original data set.
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Fig(zljr;s 5. Estimated spatial variogram using the deseasonalized data with the fitted
model.

given below:

o(h) = 270+ 18845ph (755 )

(k) (®)

Il

154 + 4625ph (L
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Figure 6. Estimated temporal variogram using the deseasonalized data with the fitted
model.
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Figure 7 Scatterplot of the true values towards the predicted ones through the
cross-validation approach.

In order to obtain a diagnostic check of the fit of the .aboye varlogra,l?
model towards the raw variogram estimates, the cr.oss-vahdatlon ap;ér()tagt
(Cressie, 1993) has been used. Based on the previous mod?l ea',ch da 111:;1
(Z(uj,t:),7 =1,...,33,t = 1,...48) has been Qel?ted and 1‘21‘29(1](:1,@ vi/l )‘
Z(uj,ti) with an associated mean-squared prediction error 6%(u;,t;). Iig.
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Figure 8. Histogram of the standardized prediction residuals.

7 shows the scatterplot of the true values towards the predicted ones: it
exhibits the typical spatial smoothing of kriging, i.e., overestimation of low
values and underestimation of high values. The histogram of the standard-
ized prediction residuals (Fig. 8) shows a fairly symmetric distribution that
is typically more "peaked” than a normal distribution.

3.3. KRIGING RESULTS

The monthly averages of 503 from January 1983 to December 1986 and
the previous spatial-temporal variogram model have been used to predict,
in January and February 1987, Sulphur-Dioxide by ordinary kriging at the
same monitoring stations. The estimated values have been compared to
the true ones (Figg. 9-10); of course, these last values have not been used
throughout the above analysis. The correlation coefficient between true
and predicted values is 0.92 for January 1987 and 0.83 for February of the
Same year. As expected, the model found gives more plausible estimates
in January 1987, because in extrapolation situations, almost by definition,
the sample data alone cannot Justify the trend model chosen.

- Finally, the kriged estimates for January 1987 were obtained using the
variogram model given in (6) at the nodes of the kriging grid. Fig. 11 shows
the gray-scale map: the highest values are clearly localized in the central
part of the graph, corresponding to the city of Milan and some outlying

districts, while the peripherical parts of the district are characterized by
the lowest values.
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Figure 10. Estimated values compared to the true ones for February 1987.

3.4. SOFTWARE

I'TSM software (Brockwell and Davis, 1987) has been used to_perform time
series analysis at each monitoring station, while GSLIB routines (Deutsch
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Figure 11. Gray-scale map of the kriged estimates for January 1987.

and Journel, 1992) and VARIOWIN package (Y. Pannatier, 1994) have been
used for structural analysis; kriging and cross-validation GSLIB programs
have been modified to use the spatial-temporal model given by (6).

4. Conclusions

In this paper ordinary kriging has been applied in the space-time domain
in order to study SO, measurements in Milan district.

A simple product spatial-temporal covariance model for the residual
process has been used to predict, in January and February 1987, Sulphur-
Dioxide at the same monitoring stations: the estimated values, compared
to the true ones, have shown that the model found, using the data set from
January 1983 to December 1986, is quite satisfactory.
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